41 極低温の科学と技術

概 要	-196℃の液体窒素は小中高校の理科やイベント等でも用いられ、身近なものとなってきました。しかし-269℃の液体ヘリウムとなると、なかなか目にする機会がないと思います。本講座では液体窒素と液体ヘリウムを製造している極低温センターを見学するとともに、液化の原理や断熱技術、低温で発現する超伝導や超流動、熱電効果、核磁気共鳴などの現象を解説、観察、体験します。理科の授業に活用できそうな実験もご紹介します。		
講師名	仲間 隆男(極低温センター長)、宗本 久弥(極低温センター 技術専門職員)、辺土 正人(理学部物質地球科学科 准教授、極低温センター併任)、與儀 護(理学部物質地球科学科准教授、極低温センター併任) 前野 昌弘(理学部物質地球科学科 准教授)、眞榮平 孝裕(理学部物質地球科学科 教授)		
開催日時	8月19日(金) 13:30~16:30		
会場	琉球大学極低温センター		
定員	10名	受講対象者	理科教員および市民一般(高校理科程度の知識を要す)
受講料	無料	申込み期間	6月27日~8月15日
講義内容	講義と設備や実験の見学		
その他	■備考/日程について、次年度以降の開催の参考にしたいので、今回都合の悪い方は要望をお知らせいただけると幸いです。		